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Peter Guthrie Tait was born in Dalkeith in 1831.  Upon the death of his father when he was just six 
his mother took him and his two sisters to live in Edinburgh with her brother.  Here in his uncle’s 
house he was encouraged to dabble in photography and astronomy.  We know that at the age of 
thirteen he was making nightly observations of the positions of Jupiter's satellites.  By this time he 
had entered the Edinburgh Academy.  Fleeming Jenkin2 was a member of the same class, James 
Clerk Maxwell in the class above.  The friendship which developed between Maxwell and Tait 
during their school days would last throughout Maxwell’s relatively short life.  If there was a 
competitive element to that friendship, encouraged by the school’s awarding of the mathematics 
prize to Tait in 1846 and to Maxwell the following year then it was certainly not apparent.  They 
exchanged drafts of papers they were writing in their teens and we know that Tait retained his 
annotated copies of Maxwell’s early geometrical papers for many years. 
 
At sixteen both young men went up to their local university but after just one session Tait moved on 
to Peterhouse, Cambridge, from where he graduated as Senior Wrangler in 1852.  When Maxwell 
eventually moved to Cambridge it was in Tait’s college that he initially enrolled despite being 
advised by Forbes3 to enter Trinity.  
 
Within a couple of years of graduation Tait had been offered a mathematics chair at Queen’s 
College, Belfast.  His research interests, however, were still wide-ranging and he was in no way 
constrained by the teaching requirements.  His first experimental work was undertaken in Belfast 
where he assisted Thomas Andrews in the preparation of three papers on ozone.  He also re-
established his friendship with the Porter brothers whom he had met at Peterhouse and, in 1857, he 
married their sister.  Tait returned to Edinburgh to succeed Forbes as Professor of Natural 
Philosophy in 1860.  His expertise as a lecturer gave him the edge over Maxwell, who also applied 
for the post. 
 
According to Tait’s contemporaries the new professor made an impression on all who met him.  He 
had an immense presence.  One of his protégés, Macfarlane, who was himself only just short of six-
foot, felt dwarfed by the man.  In the lecture theatre, whether addressing 200 undergraduates or a 
smaller number of advanced students, he would write out mathematical equations for an hour 
without referring to his notes and would deliver his sentences with clarity and purpose.  
 
Upon taking up his post in Edinburgh, Tait discovered that he was required to engage in 
experimental rather than theoretical physics.  However, in contrast to Glasgow where William 



Thomson was professor, there was no physical laboratory at Edinburgh.  Students lacked the 
facilities, not only to replicate the experiments demonstrated by Tait in his lectures but also to 
undertake original research.  With the support of Sir David Brewster (1781-1868) the laboratory 
was up and running by the end of the 1860s but it was with the expansion onto the floor above a 
decade later, made possible by the relocation of the anatomy department, that the project was 
completed.  Tait was at home in Edinburgh; he held a prestigious chair in a university which would 
yet see the likes of Max Born and Sir Edward Appleton and here he would stay for forty years. 
 
Tait was a prolific writer both of scientific papers and of textbooks. Of the latter he wrote sixteen:- 
 

A Treatise on Dynamics of a Particle (with W. J. Steele), 1856. 
Sketch of Elementary Dynamics (with William Thomson), 1863. 
A Treatise on Natural Philosophy (with William Thomson), 1867. 
An Elementary Treatise on Quaternions, 1873. 
Elementary Dynamics (with William Thomson), 1867. 
Elements of Natural Philosophy (with William Thomson), 1873. 
Sketch of Thermodynamics, 1868. 
Introduction to Quaternions (with Philip Kelland), 1873. 
The Unseen Universe (with Balfour Stewart), 1875. 
Recent Advances in Physical Science, 1876. 
Paradoxical Philosophy (with Balfour Stewart), 1878. 
Heat, 1884 
Light, 1884 
Properties of Matter, 1885 
Dynamics, 1895 
Newton's Laws of Motion, 1899 

 
Of these texts, one in particular deserves special mention.  The Treatise on Natural Philosophy was 
the fruit of a collaboration between Tait and William Thomson (1824-1907), later Lord Kelvin.  
The two physicists began writing the book soon after Tait returned to his native land from Belfast, 
where James Thomson (1822-1892), Kelvin's brother, had been amongst his colleagues.  The 
Treatise on Natural Philosophy appeared in 1867 as the first volume of what was intended to be an 
even larger work.  Its reception could not have been better had it been written by Laplace or 
Lagrange, and its translation into German was quickly arranged by Helmholtz.  Affectionately 
dubbed Thomson and Tait or even T and T' it is one of the classic science texts of all time. 
   
Tait wrote some 133 papers and a further 232 popular articles, laboratory notes, reviews and 
tributes to other scientists alive and dead.  There are three major papers on knots.  No less than 
thirteen papers are devoted to the paths of spherical projectiles, especially golf balls, and one is on 
the application of probability to matchplay golf.  There are about 70 papers on quaternions though 
just 25 of them specifically mention quaternions in the title.  Each of these areas will be explored 
briefly, the last in the context of the controversies which Tait tended to court. 
 

Topology of Knots 
 
Tait’s topology of knots, published in three papers between 1876 and 1885, was the second serious 
mathematical study of the subject.  It sprang from the speculative vortex theory of the atom, 
propounded by Kelvin.  Tait himself acted as a catalyst for Kelvin's theory in two ways: firstly by 
translating into English a paper of Helmholtz in which the apparent attraction and repulsion of 



vortices in certain fluids was noted and then by spotting the same phenomenon in the aerodynamics 
of smoke rings.  And secondly, in the early weeks of 1867 he devised an apparatus for making 
smoke rings, an apparatus consisting of a large box, initially open at one end and with a circular 
hole in the opposite face. Kelvin was present when Tait demonstrated its use to his students.  The 
box was filled with smoke and then a rubber sheet was stretched over the open end.  By striking the 
rubber sheet smoke rings were produced at the hole.  The way in which the rings intermingled and 
deflected impressed Kelvin so much that he decided to employ two boxes in his experiments in 
order to increase the number of collisions.  Kelvin enunciated his vortex theory at a meeting of the 
Royal Society of Edinburgh on 18 February 1867. 
 
Now it seemed to Kelvin that there might be a one-to-one relationship between knotted smoke rings 
and atoms.  If a full classification of knots could be worked out then the properties of all known 
matter might be discovered.  He persuaded Tait and Crum Brown to trawl for all the knots up to a 
given complexity with a view to providing a full classification.  Maxwell was enthusiastic.  He 
wrote: ‘May you......prosper and disentangle your formulae in proportion as you entangle your 
worbles’. 
 
The relationship with chemistry quickly disappeared from sight, but Tait’s fascination with knots 
only grew.  At the outset, Tait believed that no work had been done previously in this area, and it 
was not until he had made significant progress that Maxwell sent him a copy of the book 
Introduction to Topology written by a former student of Gauss, Johann Benedict Listing (1808-
1882) in 1847.4  Topology, as a mathematical term, was born in the title of this book!  Tait 
acknowledged that although Listing had made no attempt to trawl for all possible forms, he had 
certainly anticipated his own investigations.  Tait was clearly unaware at this time of Listing’s 
second book of 1862, The Census of Spatial Complexes.5 

 
Now, when a knot can be transformed into another by twisting and manipulation but without cutting 
then they are essentially one and the same.  The first problem Tait encountered was how to tell 
whether two knots which appeared to be different were actually so.  In his first paper he introduced 
the concept of knottiness, defining it as the minimum number of intersections a knot possesses.  The 
trefoil has knottiness 3 for example, and therefore any knot which can be manipulated to form a 
trefoil also has knottiness 3.  
 

 
 
Once transformed into their simplest diagrammatic forms each knot could be described in symbolic 
form dubbed a scheme.  One method of moving from knot to scheme is to traverse the knot calling 
the first intersection met A, the second B (unless it is A again) and so on.  For the first knot the 
scheme is ABBCDACD. For the second, simply ACDACD. Notice that the double B may be 
eliminated, as B is a ‘nugatory’ crossing, one that can be removed merely by twisting.  This is the 



most obvious of a number of algebraic procedures which Tait developed for the simplification of a 
knot’s projection.  But he also added one from topology - the flype.  Flyping is a Scots word  
associated with turning something inside out and, no doubt, Tait imagined the knot stretched around 
the surface of a glass sphere, so that it can be viewed from inside or outside. Armed with a variety 
of approaches to his investigation Tait went about finding all the different forms of knots of given 
knottiness.  

                         knottiness 4                                knottiness 5                                                                                    

                                                             knottiness 6 
 
There are no knots with knottiness 1 or 2. The trefoil is the only knot of knottiness 3, while for 
knottiness 4, 5 and 6 there are one, two and four forms respectively.  Tait also managed to find the 
eight forms of knot with knottiness 7.  
 
And there for a while he rested his case.  However, after completing the paper Tait became aware of 
the investigations of Thomas Penyngton Kirkman (1806-1895) on the properties of polyhedra, 
research which seemed to parallel his own work. Kirkman had been able to confirm Tait’s results 
up to sevenfold knottiness and had extended the census to knottiness eight and nine.  Armed with 
yet another method for discovering new designs Tait was able to make one or two corrections to 
Kirkman’s results and illustrate all the forms with knottiness eight or nine in his second paper, and 
with knottiness ten in his final paper of 1885. 
  
In the months following the publication of the first paper Tait concentrated on a different concept, 
that of beknottedness or belinkedness.  He defined it as the minimum number of cuts and 
reconnections required to reduce the diagram of a knot to a simple loop. In practice all possible 
configurations of the knot have to be checked to calculate this invariant. Below is a knot of 
beknottedness 2.  Crossings which are to be altered are ringed and the equals signs indicate that one 
form may be manipulated into the other without cutting. 
 

The task was not without its frustrations as we can see from a letter written by Tait to Maxwell in 
June 1877: 



 
I have got so thoroughly on one groove that I fear I may be missing or unduly 
exalting something which will appear excessively simple to anyone but myself.  You 
are just the party to detect this.  Here for instance, is one of my difficulties.  What 
are we to call the ‘belinkedness’ of the arrangement where there is no linking at all 
& yet you can't separate the rings? If you change any one sign a ring comes off, but 
one degree of linkedness is introduced!  This is neither Knot nor Link.  What is it? 
 

Reading through Tait’s papers for the first time it is surprising to discover that he gave a rather 
familiar treatment of the one-sided surface, the Möbius band.  We can produce a Möbius band by 
taking a strip of paper, giving it a half-twist before connecting the ends.  The discovery of this 
surface is one of the classic cases of simultaneous independent discovery.  August Ferdinand 
Möbius found it around September 1858 when analysing the geometry of polyhedra in pursuit of a 
prize offered by the Paris Academy of Sciences but he did not publish until 1865.  Listing found the 
same surface in July 1858 and brought it to public notice in 1861. 
 
Why is Tait’s treatment so familiar?  Well it is precisely the treatment to be found in a host of books 
today: for example in the books on recreational mathematics written by Martin Gardner from his 
column in Scientific American.  First cut the band along its length half way in. Then try a cut one-
third of the way in and so on.  Sometimes another band is created, perhaps with a different number 
of half-twists; sometimes there are two interlocking bands. 
 

In his papers Tait credits neither Möbius nor Listing with the priority of discovering what happens 
when the band is cut, despite fully acknowledging Listing’s work on knots.  Setting the record 
straight, in a tribute to Listing in Nature in 1883, he noted that some of the band’s idiosyncrasies 
had been in common currency among jugglers for some time and that Listing had alluded to them in 
his Introduction. 
 
The mathematical study of knots mushroomed in the 1920s with the discovery of invariants called 
the Alexander polynomials after their discoverer, the American topologist, James Waddell 
Alexander.  A second burst of activity in the 1980s was founded on the work of the New Zealander, 
Vaughan Jones, and led to breakthroughs by research groups around the world. In recent times the 
topology of knots has been applied to string theory, fluid flows and to DNA.  
 



Golf Ball Aerodynamics 
 
Throughout his four decades as Professor of Natural Philosophy at Edinburgh, Tait’s sorties beyond 
the city boundaries were few and far between.  When he did leave home it was for the links at St 
Andrews, where he played as many as five rounds in a day.  This passion for golf rubbed off on his 
son, who became the leading Scottish amateur golfer of the last decade of the century.  Freddie Tait 
reached the final of the British Amateur Championships three times in four years, winning 
impressively in 1896 and 1898 but squandering a five hole advantage to lose at the 37th in 1899.  
 
No doubt, Peter Guthrie, the golfer, would stand on the tee watching his partner drive off and 
wonder just what it was in the golfer's technique which produced a long drive.  But Peter Guthrie, 
the physicist, would contemplate the scientific reasons.  Many factors, it seemed to him, might 
influence the flight, from the atmospheric conditions to the strength of the golfer, from the nature of 
the material from which the golf-ball was made (then gutta percha) to the angle at which it was 
dispatched from the tee.  But the overriding factor was the back-spin imparted by the club as it 
struck the ball. 
 
There is so much coverage of ball games on television these days that the spinning, swerving ball, 
whether it be in soccer, in baseball, in tennis or in table tennis is a commonplace.  In fact, the link 
between spin and trajectory was first noticed by Newton, who in a letter of 1671 to Oldenburg on 
the subject of the dispersion of light, observed indirectly that differences in air pressure cause balls 
to have a more complex trajectory than a simple parabolic curve.  He recalled that he ‘had often 
seen a tennis ball struck with an oblique racket describe such a curve line’. 
 
Some further understanding was gained by Benjamin Robins (1707-1751) in the early 1740s.  He 
conducted a series of experiments with curved-barelled muskets and observed that the musket-ball 
swerved in the opposite direction to the curvature of the barrel.  Though he correctly attributed this 
deviation to spin, he was unable to make predictions for the want of accurately determined 
coefficients.  Heinrich Gustav Magnus (1810-1870), whose name is now attached to this effect, 
carried out his experiments in a wind tunnel in the middle of the following century.  A mathematical 
explanation was offered by Lord Rayleigh (1842-1919) in a paper of 1877 on ‘The Irregular Flight 
of a Tennis Ball’.  It highlighted the difference in pressure at the ‘front’ and at the ‘back’ of the ball. 
 
Meanwhile, between 1865 and 1880, Francis Bashforth (1819-1912), Professor of Applied 
Mathematics at Woolwich, had carried out a range of experiments on both spherical ballistics and 
ballistics with elongated heads of various shapes.  By 1881 he had made available tables of 
coefficients of air resistance for velocities between 100 and 2800 ft s-1. Such was the position when 
Tait’s recreational interest in golf spilt over into his scientific life. 
 
Tait first claimed that spin induces a golf ball to deviate from its still-air trajectory in the ‘Unwritten 
Chapter on Golf’, an article which appeared in The Scotsman newspaper in August 1887 and was 
reproduced in Nature the following month.  A characteristic of the back-spinning ball is its upward 
concavity despite the effect of gravity.  The ball soars even though its trajectory in the first 
moments of flight is relatively low. Asserting that this is so is of course a far cry from 
demonstrating it mathematically. 
 
Tait began sagaciously by exploring the simpler no-spin trajectory.  Indeed, by July 1890, he was 
reporting to the Royal Society of Edinburgh how he had modelled the trajectory of a golf ball using 
an equation from his first book, Dynamics of a Particle: 
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where V0 = initial velocity, in ft s-1, α = initial inclination, in radians, a = fixed ratio, in feet, of the 
square of the velocity to the deceleration caused by air-resistance and g = acceleration due to 
gravity, in ft s-2. From experiment and experience he tentatively suggested estimates for the 
parameters, arriving at the curve: 

 
This trajectory attains a maximum height of 62 ft, 372 ft from the tee, but has a range of just 190 
yards. 
 
In ‘Some Points in the Physics of Golf, II’, published in Nature in September 1891, Tait again 
stressed the importance of imparting back-spin to maximise carry.  This is effected best by 
employing a tee so that the lower part of the ball is struck and by roughening the ball’s surface.  He 
was unable to explain the uneven surface’s drag reducing effect now attributed to turbulence and 
did not live to witness the advent of the dimpled ball.  The no-spin model was clearly inadequate. 
Even cursory checks out on the golf course bore out the fact that the ball was in the air longer and 
the range was greater than predicted.  A complete model, taking the effect of spin into 
consideration, was clearly needed.  However, there had already been an outcry from members of the 
Royal and Ancient who considered as an affront any suggestion that they imparted spin to the ball 
to gain extra distance.  
 
If Tait was initially persuaded to study the aerodynamics of golf balls in order to predict a furthest 
possible drive then he certainly suppressed this objective, perhaps because it soon became clear that 
in theory no limiting range appeared to exist, except through human limitations.  Instead he fixed 
the range at 180 yards or even 165 yards and the duration of flight at about 6 seconds and looked at 
the effect on the other unknowns.  He concentrated on validating and refining his model using all 
the information at his disposal including that from Robins, Magnus and Bashforth. 
 
Tait wrote up his findings in two major papers each entitled ‘On the Path of a Rotating Spherical 
Projectile’.  They appeared in the 1893 and 1896 Transactions of the Royal Society of Edinburgh, 
though the publication of the second was delayed until October 1898 while Tait tried to furnish 
more accurate estimates of the model’s parameters through experimentation.  For this he drafted in 
Freddie and other promising young golfers, who in dangerously enclosed laboratory conditions hit 
balls onto a pad of clay in order to establish a realistic estimate of the initial velocity.  
 
Tait's preferred refinement of the model gives the equation of the trajectory as: 

where k is a constant of proportionality between lateral acceleration and velocity and the other 
parameters are as before.  The model is clearly complex and is based on a number of physical 
assumptions, among them that (i) the drag or resistance force on a ball varies nearly as the square of 
the speed (ii) the lift is proportional to the ball’s forward and rotational velocities (iii) the equatorial 
speed of rotation is constant.  Tait consulted the fluid dynamicist, Sir George Stokes, to check how 
reasonable were these assumptions and received reassurances, although it is true to say that both 
Tait and Stokes underestimated the speed of rotation.  Trajectories vary according to the values of 
the parameters taken, a variety of them being appended by Tait to his 1893 paper. 
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Now in order to test Tait’s trajectory it is necessary to set various parameters.  Tait had what might 
be described as a preferred typical trajectory with initial velocity 240 ft s-1 and initial inclination 
somewhere between 13.5° and 14°.  He took a to be 360 ft and set the range at 180 yd.  If we now 
take the initial inclination to be the mid-point of Tait's range, 13.75° or 0.24 radians, k is 0.151.  We 
now have a simple trajectory near to that favoured by Tait in his 1896 paper.  

Although Tait observed upward concavity in the early stages of a good drive this phase is 
completed in the first fifth of a second or so of the flight.  This is just one of the conclusions 
reached by Chris Denley of British Aerospace who has simulated the trajectory on the basis of 
Tait’s assumptions and the modern-day lift theory of Hoerner.  In the graph below, scaled in metres 
rather than yards, Denley’s trajectory (broken line) is virtually identical to that of Tait (full line), 
though the time of flight on the computer model is 5.2 s whereas Tait suggests at least 6 s.  Towards 
the century’s end the golfing press teased Tait by spinning a yarn about his son, Freddie, unleashing 
so mighty a drive that the model was rendered useless.  It was almost certainly apocryphal.6 

We can conclude that Tait’s attempt to model the flight of a golf ball is a very impressive piece of 
work.  The calculations required to run it and to validate it must have been desperately lengthy and 
tedious, and though Tait was ably assisted in this respect by his laboratory student, James Wood, 
this is still far removed from having access to a modern computer.  Tait’s development of the 
trajectory from a gravity-free environment, with lift and drag only, to a realistic vertical plane 
model with gravitational effects, validated as extensively as existing information and personal 
observation would allow, shows him to have been a noteworthy mathematical modeller.  
 
 

Quaternions 
 
Tait bought a copy of Hamilton's 700 page Lectures on Quaternions in 1853 and digested the first 
six chapters without difficulty.  Hamilton had realised that a vector u can be converted into a vector 
v using one number to adjust the magnitude and three to effect the rotation.  The general form of a 
quaternion q is: 

q = a + ib + jc + kd 
 
where a, b, c and d are real numbers and i,  j and k are vectors with magnitude equal to the square 
root of -1 in the x, y and z directions.  Tait initially struggled to come to terms with the section on 
applications but he did recognise the possibility of applying the new methods to potential theory.  
By engaging in an intensive period of correspondence with Hamilton and simultaneously extending 
the applications of quaternions in original papers, Tait, by the time he arrived in Edinburgh, knew 
as much about quaternions as did Hamilton. 
 
As Tait and many others had discovered, Hamilton’s Lectures was not the easiest of reads and 
former colleagues of Tait’s at Cambridge began to call for a more elementary text for use with 
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undergraduates.  A minor misunderstanding with Hamilton over the timing of publication led to 
some delay but eventually in 1867 Tait’s Elementary Treatise on Quaternions went to press.  It was 
a second book, however, Introduction to Quaternions, written in the main by Kelland with advice 
from Tait, which proved far more accessible to undergraduates. 
 
Tait became increasingly aware of a number of serious deficiencies in the treatment of quaternions 
to date.  It seemed to him that further development would only come by throwing off the shackles 
of the co-ordinate geometry in which they were cast.  So, in 1868, he recast some formulas of 
Cayley in quaternion form and elicited results much more directly.  Lauded by Maxwell for its 
power this paper, at least in part, landed Tait the Royal Society of Edinburgh’s Keith Prize for the 
years 1867-69 ~ but it also landed him in hot water with Cayley.7  
 
Although Maxwell would later distance himself from quaternionists, he was broadly sympathetic at 
this stage.  By November 1870, as Maxwell indicated to Tait, he had decided to ‘leaven’ his 
forthcoming Treatise on Electricity and Magnetism with quaternions but without casting them in 
Hamilton’s inaccessible form.  In fact he would use both the co-ordinates associated with Cayley 
and the quaternions championed by Tait, arguing that while the two fought for supremacy what he 
called the ‘bilingual’ method should be adopted for scientific works: ‘ploughing with an ox and an 
ass together’. 
 
Arthur Cayley, the Sadleirian Professor of Pure Mathematics in Cambridge, took a very different 
view.  Quaternions were like pocket maps, concise and compact, but not as easy to read as full-scale 
coordinate maps.  The matter was a long time coming to a head, but come to a head it did.  Writing 
to Cayley in 1888 Tait argued that ‘no problem or subject is a fit one for the introduction of 
Quaternions if it necessitates the introduction of Cartesian Machinery’.  He described those parts of 
mathematics which do not lend themselves to quaternionic treatment as ‘disaffected or lob-sided’, 
no doubt valuable but ‘like the occipital ribs and the anencephalous heads in an anatomical 
museum’.  Two years later he called them ‘elegant trifles’.  
 
Then in 1894 Tait, rather tactlessly suggested that the notion of a matrix, Cayley’s greatest legacy to 
pure mathematics, is to be found in Hamilton’s works.  Hardly surprising then that the two 
remained ‘poles asunder’ in the words of Tait and their attitudes to each other had somewhat of an 
edge.  In the end, they agreed that each should make out their respective cases for quaternions and 
co-ordinate geometry and present them for publication side-by-side in the Proceedings of the Royal 
Society of Edinburgh, and this they duly did only months before Cayley died. 
 
Also of interest is the disparity between the views of Tait and the American, Josiah Willard Gibbs 
(1839-1903), in the early years of the last decade of the century. 
 
A quaternion is part scalar (a) and part vector (ib + jc + kd).  It seemed to Gibbs that, in the works 
of Hamilton and his disciple Tait, the scalar part of the quaternion was being used so sparingly that 
it could be dispensed with altogether to leave just the vector part.  He tried out his new algebra on 
his students at Yale before making it available to a wider audience in two privately published 
pamphlets in the 1880s.  Much the same idea occurred to Oliver Heaviside (1850-1925), who 
between 1885 and 1887 wrote a number of papers for The Electrician happily retaining the scalar 
and vector products in Hamilton’s notation but with no role for quaternions as such. 
 
Tait had become somewhat disillusioned by the lack of progress in spreading the quaternionic 
gospel.  The seeds had been sown by Tait in papers, books and lectures but the stoney ground would 



not bare wheat.  Worse still, shoots of a plant with an apparently simpler structure began to break 
the ground and it threatened to put the still weak quaternionic plant in the shade.  In the preface to 
the third edition of his Elementary Treatise Tait’s frustration got the better of him and he called the 
new vector analysis of Gibbs ‘a sort of hermaphrodite monster’! 
 
Gibbs replied with restraint and not a little charm in Nature in April 1891: ‘If my offence had been 
solely in the matter of notation, it would have been less accurate to describe my production as a 
monstrosity, than to characterize its dress as uncouth....’ and went on to argue that vectors are free 
from artificiality, are superior both in notion and notation and can be extended to four or more 
dimensions.  In his splendid History of Vector Analysis8, Michael Crowe has argued that the paper 
was carefully constructed and reasonable and it must have appealed greatly to the uncommitted and 
the neutrals.  By contrast, in the debate which followed ‘the ratio of heat to light was especially 
high in the writings of the quaternionists’ who saw Gibbs and Heaviside as upstarts.  Though it was 
vector analysis which eventually held sway, we regard the quaternions of Hamilton and Tait as a 
precursor, possibly a necessary precursor.  Tait’s great achievement was that, by recognising that 
the laws of physics are independent of co-ordinate systems and that mathematical notation should 
reflect that reality, he was able to recast Hamilton’s ideas in a form with which physicists could 
work  
 
Tait will be remembered as one of the founders of the mathematical theory of knots, as a pioneer 
researcher into the physics of flight and as the scientist who, in the later decades of the nineteenth 
century, did more than any other to help free physics from points and axes of reference.  These 
legacies are sufficient in themselves to earn Tait a place high on the physics roll of honour for this 
period but his collaboration with Thomson and, above all, his friendship and scientific 
correspondence with Maxwell afford him a unique niche. 
 
 

Notes 
 
1. This is an abridged and edited version of  ‘Peter Guthrie Tait, Victorian Scientist’, a paper given 
at the symposium on Maxwell and His Circle, organised by the James Clerk Maxwell Foundation in 
conjunction with the Edinburgh International Science Festival in April 1995 and repeated at the 
symposium on Scotland’s Mathematical Heritage: Napier to Clerk Maxwell at the Royal Society of 
Edinburgh in July 1995. The author is grateful to David Forfar for his helpful comments. 
2.  Fleeming Jenkin, FRS, Professor of Engineering at Edinburgh University, 1868-1885. 
3.  James David Forbes, FRS (1809-1868), Professor of Natural Philosophy at Edinburgh 
University. 
4.  Listing, J. B.   Vorstudien zur Topologie, Abgedruckt aus der Göttingen studien, 1847; 
Göttingen, 1847. 
5.  Listing, J. B.   Der Census räumlicher Complexe, oder Verallgemeinerung des Euler’schen 
Satzes von Polydern ...... Aus dem 10.bde der Abhandlungen der Königlichen gesellschaft der 
wissenschaften zu Göttingen; Göttingen, 1862. 
6.  Denley, C. & Pritchard, C. (1993)   ‘The golf ball aerodynamics of Peter Guthrie Tait’, 
Mathematical Gazette 77, 298-313. 
7.  There can be no hiding the fact that Tait had a number of disagreements with other scientists, 
perhaps as many as eight, and that some were heated. 
8. Crowe, M. J.  History of Vector Analysis, University of Notre Dame Press, 1967; Dover, 1985. 


