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“Maxwell was not, and certainly never attempted 
to be, in the foremost rank of mathematicians. 
He preferred always to have before him a geometrical
or physical representation of the problem in which
he was engaged, and to take all his steps with the 
aid of this: afterwards, when necessary, translating
them into symbols.” 
Obituary Tribute to Maxwell in 1879 by schoolfellow 
and scientific colleague, Professor P. G. Tait,1 (1831–1902),

Introduction 
During the 19th century, important advances were
made in both physics and mathematics.

In physics, particularly in electricity and magnetism,
the names of Faraday, Maxwell, Hertz and Marconi 
are well known to physicists and engineers. 

In mathematics, the names of Gauss, Galois, Riemann
and Noether are well known to mathematicians. 
Several of the advances in mathematics were later to
prove crucial in 20th century  physics. 

Euclidean and Non-Euclidean Geometry  
The first four postulates of Euclid date back more 
than 2,000 years and are part of early education in
geometry. They are:
1) A straight line may be drawn between any two points,

2) Any straight line may be indefinitely extended,

3) A circle may be drawn with any given point
as centre and any given radius,

4) All right angles are equal.

The fifth postulate of Euclid is that:
5) through any point not on a given line, there is 

only one line which is parallel to the given line
(the parallel postulate).

The philosopher Immanuel Kant
had thought (Fig.1) in the 18th

century that all geometry was,
a priori, Euclidean.

However, by the 1830s, it was 
becoming clear, through the work
of the Russian mathematician 
Nikolai Lobachevsky and the 
Hungarian mathematician 
János Bolyai, that, despite all the 
attempts that had been made, 
Euclid’s fifth postulate (the parallel
postulate) could not be proved
from the first four postulates of 
Euclid and was independent 
of them.

Lobachevsky and Bolyai had 
discovered that, apart from the
familiar geometry of Euclid, 
where all five of the above 
postulates held true, there was 
an alternative geometry where 
the first four postulates of Euclid 
held true but Euclid’s parallel 
postulate did not. In this alternative 
geometry, the sum of the angles of a triangle 
was less than 180o and parallel lines diverged.

1 Professor P. G. Tait (1831 – 1901), Professor of Physics at Edinburgh University; Maxwell’s chief scientific correspondent.
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Figure 1: Emmanuel Kant
(1724–1804), Wikipedia Commons

Figure 2: Nikolai Lobachevsky
(1792–1856), Wikipedia Commons

Figure 3: Janos Bolyai
(1802–1860), Wikipedia Commons
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For illustration of this alternative geometry, we may
consider a very small creature – a bug – moving around
on a two dimensional surface. We assume that the bug
is purely confined to the surface and is not conscious
of any dimension other than along the surface. The
bug can find the shortest distance between any two
points on the surface by means of a taut string running 
between the two points. These are the straight lines of
the bug’s geometry. Furthermore, the bug can draw 
circles of any radius on the surface (Euclid’s third 
postulate) and also take length and area measurements. 

We first consider the bug
moving around on the flat
surface of a square (Fig. 4).
The bug chooses any three
points on the surface, finding
the shortest distance between
any two by use of a taut 
string (the bug’s straight
lines). He finds that the sum
of the internal angles of any

triangle thus drawn on the surface is 180o and parallel
lines remain parallel. He concludes that the geometry
of a flat surface is the usual geometry of Euclid.

The bug next moves
around on a second 
surface in the shape of a
saddle (Fig. 5). Again, the
bug chooses three points
on the surface, finding
the shortest distance 
between any two (by use
of a taut string but 

keeping the string confined to the surface) and again
draws a triangle. He finds that the sum of the angles 
of his triangle (Fig. 5) is less than 180o and lines drawn
on the saddle, which were initially parallel, diverge.
However, the bug finds that if his triangle is drawn 
ever smaller, then the sum of the angles of a triangle 
approaches ever nearer to 180o. The bug concludes 
that the geometry of this surface, in the large, is not 
Euclidean but, in the very small, is nearly Euclidean.

The bug next moves around on
the surface of a pseudo-sphere
(Fig. 6). As usual, the bug chooses
three points on the surface, finds
the shortest distance between any
two of them and again draws a

triangle on the surface. He finds that the sum of the 
angles of his triangle is less than 180o. However, the 
bug finds that if he draws the triangle ever smaller, the
results become closer and closer to the results under 
Euclidean geometry. The bug concludes that the geometry
of the pseudo-sphere surface is, in the large, not Euclidean
although, in the very small, it is nearly Euclidean.

The bug (which we shall
now call the bowl-bug)
next moves around on a
bowl-like surface (Fig. 7)
in the form of a hyperbola
rotated round its axis. 
We imagine another bug
(which we shall call, the
disc-bug) moving round
on the flat disc (shown in
grey) in such a way that

(a) the bottom point labelled, -1 (b) the bowl-bug and (c)
the disc-bug are all inline – see the two projection lines
with arrows in Fig. 7. When the bowl-bug moves on the
dark red lines (the bowl-bugs straight lines), the disc-bug
moves on the bright red line. Both bugs find that the 
angles of a triangle add up to less than 180o. Both bugs
find that their geometry is not Euclidean except that,
for very small figures, the geometry tends, in the limit,
towards being Euclidean. 

The flat disc is known as the Poincaré disc and is an
illustration, on a flat plane, of the geometric figures
arising in the non-Euclidean geometry (‘hyperbolic 
geometry’) of Lobachevsky and Bolyai. 

The bug next moves around 
on the surface a sphere (Fig. 8).
Again, the bug chooses three
points on the surface, finds the
shortest distance between any
two (by use of a taut string but
always confining the string 
to the surface) and draws a 
triangle. He finds that the sum

of the angles of his triangle is more than 180o and lines
which, at the equator, start parallel (i.e. lines of longitude)
all meet up at the North pole. For example, the bug  finds
that the angles of the grey triangle (Fig. 8) add up to
270o. But the bug finds that the smaller he draws the 
triangle, the more the surface geometry becomes closer
to Euclidean. The bug concludes that the geometry of
the surface of the sphere is, in the large, non-Euclidean
although, in the very small, it is nearly Euclidean.

Figure 4: Flat Surface

Figure 5: The surface of a saddle, 
courtesy tex.stackexchange.com

Figure 6: The surface of a pseudosphere,
courtesy steemit.com

Figure 7: Hyperbolic surface and 
the projection into a Poincare disc, 
courtesy bjlkeng.github.io

Figure 8: Triangle drawn on a sphere 
where the three angles add up to 270o,
courtesy homepages.ucl.ac.uk 
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These examples show that curved, smooth surfaces 
exhibit a geometry that is, in the large, non-Euclidean,
but, in the small, tends towards being Euclidean. This
is particularly true if the points on a curved surface 
are projected onto a flat plane. We are familiar with 
Mercator’s projection of the Earth distorting distances.

The analysis of non-Euclidean
geometries was considered by
Gauss and Riemann. Gauss had
considered the geometry of two 
dimensional curved surfaces, 
as in the examples above. Riemann 
extended Gauss’ work to spaces of
three, four or any number of 

dimensions which have, in the large, a non-Euclidean
geometry but in the very small, a Euclidean geometry.
Such smooth surfaces are called, in mathematics, 
‘manifolds’.

In the 20th century, the application
of non-Euclidean geometry lead to
significant advances in physics. For
example, in order to take account 
of gravity, Einstein required, for 
his description of space, a four 
dimensional non-Euclidean 
geometry with the normal three 

dimensions (x,y,z)  of space plus the addition of the
time dimension, t. For a heavy body, the attractive force
of gravity ensures that the trajectories of particles in
‘free fall’ (i.e. the straight lines in this geometry) 
converge towards the centre of the heavy body thus
gravity exhibits a non-Euclidean character.

Cantor, orders of infinity and
the ‘continuum hypothesis’ 
In the 1890s, Georg Cantor showed
that an infinite set can be put into
one-to-one correspondence with a
second infinite set which is only a
subset of the first set! 

For example, the infinite set {1,2,3,4,...} can be put 
into one-to-one correspondence with the infinite set 
{2, 4, 6, 8,...}, which is only a subset of the first set. The
one-to-one correspondence is formed by the pairing
of n in the first set with 2n in the second set. 

The first infinite set may seem, at first glance, to be
twice as large as the second infinite set. However, the
existence of the one-to-one correspondence between
the two sets makes, in Cantor’s sense, these two infinite

sets the same ‘size’ despite one being a subset of the other!
Infinite sets behave rather differently from finite sets!

In 1892, Cantor showed that, in his sense, the infinite set
consisting of all the ‘real’ numbers (i.e. all the integers and
all the numbers expressed in finite or infinite decimals)
was ‘bigger’ than the infinite set consisting of the ‘positive
integers’ {1, 2, 3, 4,...} because there is no way to make
each decimal number correspond to a different integer
– there are just not enough integers to go round. 

Cantor called the infinite set consisting of all the 
positive integers {1, 2, 3, 4...}, ‘countable’ whereas
the infinite set of all the real numbers, being a larger 
infinity, was called ‘uncountable’.

The concept that one infinite set could be ‘bigger’
(in Cantor’s sense) than another infinite set was very
radical and took quite a while to be accepted although
now this idea is well-established in the mathematical
canon.  

However, Cantor was not able to prove what is called
the ‘continuum hypothesis’ namely whether, or not,
there is an infinite set whose size (in the Cantor sense)
lies intermediate between the set of all the integers 
and the much bigger set of all the real numbers. 

It was only in the 20th century that the continuum 
hypothesis was found to lie outside the axioms of 
arithmetic and therefore could not be settled one way
or the other within these axioms. 

Different types of number
Mathematicians have always been interested in 
understanding numbers. Originally these arose as the
lengths of lines in geometric figures. Thus any such
quantity as the square root of two (which is the length
of the diagonal of a unit square) is a number. In the 19th

century, the effort to clarify the different kinds of number
led to many profound new ideas in mathematics.
We begin by explaining the different types of number.

The ‘integers’ are the set of whole numbers {...-2, -1, 0, 
1, 2, 3, 4...} and the ‘rational’ numbers (such as 2/3) 
are those formed by dividing one integer by another
(rational being used in the sense of  a ratio). Such 
numbers can all be written as decimals that are 
either finite or recurring, for example, 7/8=0.875 or
2/9=0.222222... or 15/273=0.054945054945... All the
other real numbers are called ‘irrational’. Their decimal
expressions are non-recurring. For example,         =
1.4142135623... or π=3.1415926535...

Figure 9: Carl Friedrich Gauss
(1777–1855), 
Wikipedia Commons

Figure 10:
Bernhard Riemann
(1926–1866), 
Wikipedia Commons

Figure 11: Georg Cantor, 
(1845–1918), 
Wikipedia Commons 
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The simplest irrational numbers are the ‘radical’ 
numbers. These are made from square roots and 
cube roots (or more generally, any higher root) 
of integers by using the usual arithmetic operations 
of addition, subtraction, multiplication and division. 
For example, the two solutions of the 
quadratic ax2+bx+c=0  can be written as    

The algebraic’ numbers are the set of all the 
solutions to polynomial equations with rational 
coefficients.

The ‘real’ numbers are all the possible decimal 
numbers, whether they are integers or require their
decimal representation to have a finite, recurring 
or non-recurring number of decimals. Most of the 
real numbers are not algebraic. 

The ‘complex’ numbers in mathematics are those of the
form (a+bi) where a and b are real numbers and i is the
square root of -1. Complex numbers cannot be used
for measuring lengths (such as in Euclidean geometry)
so i is often said to be an imaginary number. However,
the rules of arithmetic can be extended to include
them and it turns out that they are very useful 
mathematical tools with many important applications
in physics and engineering.  

Construction with straightedge 
and compass 
Some of the problems solved for the first time in the
19th century concerned problems regarding the 
different geometrical figures that could be drawn 
accurately with a ruler (in the sense of a straightedge
without any markings) and a compass. In mathematical
terms, such figures are called ‘constructable’.

The ancient Greeks knew how to construct, using only
ruler and compass, a triangle (a 3-gon), a square 
(a 4-gon) and a pentagon (a 5-gon), all with equal sides,
and to bisect a general angle. They also knew how to
construct an equal-sided polygon with double the 
number of sides of a given equal-sided polygon. 

But the ancient Greeks had found that they could not
construct, using only a straightedge and a compass, an
equal-sided polygon having an arbitrary number of
sides or trisect a general angle or duplicate a cube
(i.e. given a cube of unit volume,  the aim is to construct
the side of a cube which has a volume of two units) or
square a circle (i.e. given a circle, to find the side of a
square of the same area). Was this just lack of effort, 
or was there a deep reason for this?

Little progress on these problems was made in the
more than a thousand years between ancient times 
and the start of the 19th century.

It was not until 1796, that at the age of 19, the 
mathematician Carl Friedrich Gauss (mentioned above)
made inroads into these problems. Gauss was one of
the great mathematicians of the first half of the 19th

century. He showed that an equal-sided polygon with
n-sides could be constructed provided the number n
was the product any number of distinct prime numbers
of the form                  – being 3, 5 and 17 when n=0, 1 or 
2 – multiplied by a power of 2.  

In 1837, Pierre Wantzel proved 
that it was impossible, with only
straightedge and compass to 
(a) trisect a general angle and
(b) to duplicate the cube. 

Furthermore, the 19th century also
provided the proof that it was not
possible, by ruler and straightedge,

to square the circle. If that had been possible, it would
have been possible to construct the number        . 
But Lindemann had proved in 1882 that the number π
was transcendental (see later). It followed that as the
number          was also transcendental. It was known that
transcendental numbers were not constructible with
only ruler and a compass. 

We do not go into the proofs but each involved new
mathematical ideas that were needed to understand 
the relevant kind of number.

Polynomials with integer coefficients 
It was known by the 19th century, that all polynomial
equations have solutions (which might be real numbers
or complex numbers) and the number of solutions2

was equal to the degree of the polynomial. 

The great importance of this theorem in mathematics
is shown by the fact that this theorem is known as the
‘fundamental theorem of algebra’.

Quadratic equations
It was known since Babylonian times, that the two 
solutions of the quadratic equation with integer
coefficients, namely ax2+bx+c=0 are:

Figure 12:
Pierre Wanzel (1814 –1848 ), 
Courtesy MacTutor

2 Including the number of repeated solutions. 
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These two solutions involve purely radical expressions
(see above) in the coefficients {a,b,c}. 

The two solutions may require, for their expression,
the use of complex numbers. For example, a complex
number is required whenever b2 is less than 4ac so the
expression  (b2-4ac) in the coefficients is negative. In
order to express the square root of a negative number,
the number i is required. For example, the complex
number                             .

The formula for the cubic and quadric 
polynomial
It was known, from the 16th century onwards, that 
formulae, similar to the quadratic formula, although
more complicated, existed for the solutions of all cubic
and quartic polynomial equations, the formulae
involving only radical expressions in the polynomial’s
integer coefficients. 

However, the attempts to find a similar formula for the
general quintic, and not just for some special quintics,
did not meet with success. It was suspected that 
the attempt to find a formula, in terms of  radical 
expressions, for all quintics might not be possible. 

Nevertheless, the quest was pursued to find formulae,
like that for the quadratic, which gave general solutions
of quintic, and higher degree equations (in terms of
their integer coefficients).  

The reasons why this quest was unsuccessful  remained
a mystery for the 300 years between 16th and 19th

century.

Neils Abel
In about 1820, the Norwegian 
mathematician Neils Abel proved,
via his ingenuity with algebra, that
that the general quintic equation
could not be solved by a general 
formula involving only radical 
expressions in the integer coefficients
of the quintic. However, he did 
not develop the concepts which
proved to be fundamental to 
answering the question; that was
done by Evariste Galois. 

Evariste Galois 
and Galois theory
In  1830s, Evariste Galois, while still
in his teens, was able to develop  the
conditions  that had to be satisfied
for a general quintic or higher 
degree polynomial  to be solvable
using radical expressions in the 
integer coefficients, thereby solving
a problem that had stood for 
300 years. 

An example of a quintic equation whose five roots 
exist but cannot be expressed in terms of radical 
expressions is (x5 − x + 1) = 0. 

Galois had proved that the set of all radical numbers
was smaller than the set of algebraic numbers (i.e. the
set of all solutions to polynomial equations with integer
coefficients).

We do not go into the details as they are somewhat
technical, suffice it to say that, in presenting his solution,
Galois needed to originate the concept of a ‘group’.  
This encodes the subtle symmetry properties of the set
of all solutions of this equation. (Note that the word
‘group’ has a purely technical meaning in mathematics,
quite  different from its usual meaning). 

The group concept has proved enormously fruitful
in mathematics and is now central to many areas of
physics (see Section on symmetry). 

Galois had laid the foundations for a theory that is
named after him, namely ‘Galois Theory’. Galois Theory
has played an important role in some of the most 
celebrated mathematical discoveries of the 20th 
century. These have included Andrew Wiles’ 1994 
proof of Fermat’s Last Theorem3. 

Although Galois accomplished his investigations 
when he was just 19, he is now recognised as being 
one of the great mathematicians of the 19th century. 
He died in 1832 at age 20 from wounds suffered 
in a duel. His work was not published until 1846 
by Liouville4 and was not included in a textbook 
until the 1870s5.

Figure 13: Neils Abel
(1802–1829), 
Wikipedia Commons

Figure 14: Evariste Galois
(1811–1832), 
Wikipedia Commons

3 Fermat’s famous Last Theorem is that xn+yn=zn has no  integral solutions for (x,y,z) if n is a positive integer, other than n=1 and n=2. 
4 Joseph Louiville, 1846, ‘Oevres mathematique d’Evariste Galois’. T. XI, 381-444
5 Camille Jordan, 1870, ‘Traité des Substitutions et les Equations Algébrique’ (Wentworth Press) 
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Transcendental numbers
‘Transcendental’ numbers are numbers that do not 
satisfy any polynomial equation with integer 
coefficients, no matter what the degree of the equation.
The number π is the best such example. Although only
a few specific transcendental numbers are known, most
numbers are transcendental. Indeed, the numbers that
are the solutions to polynomial equations with integer
coefficients (i.e. the set of all algebraic numbers) form a
countable set, while the set of all transcendental forms
an uncountable set and so is ‘bigger’ (in Cantor’s sense)
than any countable set. 

In 1851, Joseph Liouville was the first
to express a transcendental number as
an infinite number of non-recurring
decimals. The number was:
0.1100010000000000000000010000...
where there is a 1 in place n!
(factorial n) and a zero otherwise. The
1s follow as 1! = 1, 2! = 2, 3! = 6, 4! = 24.

In 1873, Charles Hermite proved that
the number which we now call ‘e’
(the base of Napierian logarithms) 
was transcendental.  

In 1882, Frederick Lindemann 
proved that the number π was also
transcendental. A consequence of his
proof was that it was not possible to
‘square the circle’ (i.e. to construct,
with ruler and compass, a square
equal in area to a given circle). 

Symmetry and 
conservation laws
The word ‘symmetry’ has a wider
meaning in mathematics and physics

than just requiring  that the visual appearance of the
two sides of a picture be symmetrical. 

In mathematics, symmetry refers to the result of certain
actions on an object that change some of its features
while leaving others unchanged. 

For example, an equilateral triangle
(Fig. 18) may be left alone (action 1)
or may be turned by 120o (action 2)
or by 240o (action 3) or flipped over
(action 4). These actions do not affect
the overall ‘look’ of the triangle but
they move its vertices. 

The actions can be combined to make a mathematical
group (a symmetry group). 

In physics, it may be found that the result of an 
experiment is independent of  the place or the time
where the experiment was carried out i.e. the experiment
exhibits place-symmetry and time-symmetry.
Furthermore, the experimental results may not depend
on the direction in which the apparatus happened to 
be facing at the time i.e. the experiment exhibits 
rotation-symmetry.

In the early 20th century, the 
algebraist Emmy Noether proved a
rather remarkable result, namely
that any (continuous and smooth)
symmetry implies a conservation
law (Noether’s Theorem). Emmy
Noether was described by Albert
Einstein as one of the great
mathematicians of his era.

The first symmetry above implies
the conservation of momentum, the second, the 
conservation of energy and the third, the conservation
of angular momentum. 

The notions of symmetry and a group of symmetries
has now become fundamental in physics. For example,
the notion of symmetry is central to the theory of 
elementary particles.

It is thought that Maxwell, had he been alive at the 
time, would have much appreciated  the  connection
between symmetry and conservation laws as is implied
by Noether’s Theorem.

This story shows how ideas (such as that of a group)
that first arose in a purely mathematical context 
can have profound implications for our general 
understanding of the physical world.

Figure 15: Joseph Liouville
(1809–1882),
Wikipedia Commons

Figure 16: Charles Hermite
(1822–1901), 
Wikipedia Commons

Figure 17:
Ferdinand Lindemann
(1852–1939),
Wikipedia Commons

Figure 18:
Symmetry of an 
Equilateral Triangle

Figure 19:
Emmy Noether (1882–1935)
Courtesy es.paperblog.com
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